Respuesta :
so, based on the provided vertices, the hyperbola will look more or less like the picture below, with those asymptotes, so is a vertical hyperbola.
since the center is at the origina, that makes the traverse axis of 20, namely a = 10, what is "b" then?
[tex]\bf \textit{hyperbolas, vertical traverse axis } \\\\ \cfrac{(y- k)^2}{ a^2}-\cfrac{(x- h)^2}{ b^2}=1 \qquad \begin{cases} center\ ( h, k)\\ vertices\ ( h, k\pm a)\\ c=\textit{distance from}\\ \qquad \textit{center to foci}\\ \qquad \sqrt{ a ^2 + b ^2}\\ asymptotes\quad y= k\pm \cfrac{a}{b}(x- h) \end{cases}\\\\ -------------------------------[/tex]
[tex]\bf \pm\cfrac{5}{4}x~~=~~k\pm \cfrac{a}{b}(x- h)\implies \pm\cfrac{5}{4}x~~=~~0\pm \cfrac{a}{b}(x- 0) \\\\\\ \pm\cfrac{5}{4}x~~=~~\pm\cfrac{a}{b}x\impliedby \begin{array}{llll} \textit{let us use the positive one}\\ \textit{and since we know }a=10 \end{array} \\\\\\ \cfrac{5x}{4}=\cfrac{10x}{b}\implies \cfrac{5x}{10x}=\cfrac{4}{b}\implies \cfrac{1}{2}=\cfrac{4}{b}\implies b=8\\\\ -------------------------------\\\\ \cfrac{(y-0)^2}{10^2}-\cfrac{(x-0)^2}{8^2}=1\implies \cfrac{y^2}{100}-\cfrac{x^2}{64}=1[/tex]
since the center is at the origina, that makes the traverse axis of 20, namely a = 10, what is "b" then?
[tex]\bf \textit{hyperbolas, vertical traverse axis } \\\\ \cfrac{(y- k)^2}{ a^2}-\cfrac{(x- h)^2}{ b^2}=1 \qquad \begin{cases} center\ ( h, k)\\ vertices\ ( h, k\pm a)\\ c=\textit{distance from}\\ \qquad \textit{center to foci}\\ \qquad \sqrt{ a ^2 + b ^2}\\ asymptotes\quad y= k\pm \cfrac{a}{b}(x- h) \end{cases}\\\\ -------------------------------[/tex]
[tex]\bf \pm\cfrac{5}{4}x~~=~~k\pm \cfrac{a}{b}(x- h)\implies \pm\cfrac{5}{4}x~~=~~0\pm \cfrac{a}{b}(x- 0) \\\\\\ \pm\cfrac{5}{4}x~~=~~\pm\cfrac{a}{b}x\impliedby \begin{array}{llll} \textit{let us use the positive one}\\ \textit{and since we know }a=10 \end{array} \\\\\\ \cfrac{5x}{4}=\cfrac{10x}{b}\implies \cfrac{5x}{10x}=\cfrac{4}{b}\implies \cfrac{1}{2}=\cfrac{4}{b}\implies b=8\\\\ -------------------------------\\\\ \cfrac{(y-0)^2}{10^2}-\cfrac{(x-0)^2}{8^2}=1\implies \cfrac{y^2}{100}-\cfrac{x^2}{64}=1[/tex]

Answer:
The equation of hyperbola is [tex]\frac{y^2}{10^2}-\frac{x^2}{8^2}=1[/tex].
Step-by-step explanation:
Given information: Vertices at (0, ±10) asymptotes at [tex]y=\pm \frac{5}{4}x[/tex].
Vertices are on the y-axis, so given hyperbola is along the y-axis. The standard form for the hyperbola is
[tex]\frac{(y-k)^2}{b^2}-\frac{(x-h)^2}{a^2}=1[/tex]
where, (h,k) is the center of hyperbola. (0,±b) are vertex and [tex]y=\pm \frac{b}{a}x[/tex] are asymptotes.
Vertices at (0, ±10), it means center of the hyperbola is (0,0). So the standard form for the hyperbola is
[tex]\frac{y^2}{b^2}-\frac{x^2}{a^2}=1[/tex] .... (1)
Vertices of hyperbola:
[tex](0,\pm b)=(0, \pm 10)[/tex]
On comparing we get
[tex]b=10[/tex]
The value of b is 10.
Asymptotes of the hyperbola:
[tex]\pm \frac{b}{a}x=\pm \frac{5}{4}x[/tex]
On comparing both sides, we get
[tex]\frac{b}{a}=\frac{5}{4}[/tex]
Substitute b=10.
[tex]\frac{10}{a}=\frac{5}{4}[/tex]
On cross multiplication,
[tex]40=5a[/tex]
Divide both sides by 5.
[tex]8=a[/tex]
The value of a is 8.
Substitute a=8 and b=10 in equation (1) to find the equation of hyperbola.
[tex]\frac{y^2}{10^2}-\frac{x^2}{8^2}=1[/tex]
Therefore the equation of hyperbola is [tex]\frac{y^2}{10^2}-\frac{x^2}{8^2}=1[/tex].

Otras preguntas
15 POINTS! What is the function of the nervous system? What is the basic unit of the nervous system?
HELP!!Find the eighth term of the sequence given by the rule tn = -3n + 10
a) 14
b) -14
c) -34
d) 34